446 | 2 | 30 |
Downloads | Citas | Reads |
针对岩石破裂过程中产生的声发射(AE)信号夹杂大量噪声的问题,提出了一种基于斑马优化算法(ZOA)改进变分模态分解(VMD)并与改进的自适应小波阈值(IAWT)联合的声发射信号降噪算法。利用ZOA算法优选出影响VMD分解效果的模态个数K和二次惩罚因子α;通过相关系数将分解出的IMFs划分为有效分量、含噪分量和剔除分量;针对小波阈值(WT)降噪算法不具备自动调整小波基以及软、硬阈值函数存在偏差大和不连续的弊端,提出了IAWT算法去除IMFs中的噪声分量,并与有效分量合并重构,得到降噪后的AE信号。通过模拟和实测AE信号验证并与现有降噪算法对比,结果表明ZOA-VMD-IAWT降噪算法适合处理AE信号,信号的时频特征得以保留。研究结果可为岩石AE信号理论及实际工程应用提供参考。
Abstract:Aiming at the problem that acoustic emission(AE) signal generated in rock fracturing process contains a lot of noise, an acoustic emission(AE) signal noise reduction algorithm with the variational mode decomposition(VMD) and the improved adaptive wavelet threshold(IAWT) is proposed based on zebra optimization algorithm(ZOA). Using ZOA algorithm, the number of modes(K) and quadratic penalty factors(α) that affect the decomposition effect of VMD are selected. The decomposed IMFs are divided into effective, noisy and excluded components by correlation coefficient. In view of the shortcomings of the wavelet threshold(WT) denoising algorithm, which does not automatically adjust the wavelet basis and the large deviation and discontinuity of the soft and hard threshold functions, this paper proposes an IAWT algorithm to remove the noise component in IMFs and then the denoised AE signal is reconstructed with the effective component. Through the verification of simulated and measured AE signals and the comparison with existing denoising algorithms, the results show that the proposed noise reduction algorithm is suitable for processing AE signals, and the time-frequency characteristics of the signal can be retained. The research can provide a reference for AE signal theory and practical engineering applications.
[1] 金解放,赵奎,王晓军,等.岩石声发射信号处理小波基选择的研究[J].矿业研究与开发,2007,27(2):12-15.JIN Jiefang,ZHAO Kui,WANG Xiaojun,et al.Study on selection of wavelet basis for processing of rock acoustic emission signal[J].Mining Research and Development,2007,27(2):12-15.
[2] 纪俊卿,张亚靓,张静,等.基于新小波阈值的轴承故障诊断方法[J].小型微型计算机系统,2021,42(2):315-319.JI Junqing,ZHANG Yaliang,ZHANG Jing,et al.Bearing fault diagnosis method based on new wavelet threshold[J].Journal of Chinese Computer Systems,2021,42(2):315-319.
[3] 赵奎,杨道学,曾鹏,等.基于EEMD-SCBSS的岩石声发射信号去噪方法[J].振动与冲击,2021,40(5):179-185,210.ZHAO Kui,YANG Daoxue,ZENG Peng,et al.Denoising method of rock acoustic emission signal based on EEMD-SCBSS[J].Journal of Vibration and Shock,2021,40(5):179-185,210.
[4] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processi-ng,2014,62(3):531-544.
[5] 张宝峰,左铭,朱均超,等.基于VMD与小波阈值的激光自混合干涉位移信号滤波方法[J].激光杂志,2021,42(2):77-82.ZHANG Baofeng,ZUO Ming,ZHU Junchao,et al.Research on laser self-mixing interference displacement signal filtering method based on VMD and wavelet threshold[J].Laser Journal,2021,42(2):77-82.
[6] 王婷婷,李方,霍雨佳,等.基于AO优化VMD-小波包的岩石破裂声发射信号去噪算法[J].采矿与岩层控制工程学报,2023,5(6):063067.WANG Tingting,LI Fang,HUO Yujia,et al.Modified denoising algorithm of rock fracturing acoustic emission signal based on AO optimized VMD-wavelet packet[J].Journal of Mining and Strata Control Engineering,2023,5(6):063067.
[7] TROJOVSKá,DEHGHANI M,TROJOVSK■.Zebra optimization algorithm:A new bio-inspired optimization algorithm for solving optimization algorithm[J].IEEE Access,2022(10):49445-49473.
[8] 张志钊.改进VMD去噪与多特征融合的岩石声发射信号识别研究[D].南昌:江西理工大学,2023.ZHANG Zhizhao.Research on rock acoustic emission signal recognition base on improved VMD denoising and multi feature fusion[D].Nanchang:Jiangxi University of Science and Technology,2023.
[9] 吴佳享,孙云莲,陈楚昭.基于MRSVD-VMD的多分支配电网故障定位[J].电力系统及其自动化学报,2022,34(11):58-65.WU Jiaxiang,SUN Yunlian,CHEN Chuzhao.Fault location of Multi-branch distribution network based on MRSVD-VMD[J].Proceedings of the CSU-EPSA,2022,34(11):58-65.
[10] FISCHER J,DOOLAN C.An improved eigenvalue background noise reduction method for acoustic beam forming[J].Mechanical systems and signal processing,2020,140(6):106702.1-106702.15.
[11] 张冬雪,苑津莎,李中.一种改进阈值法小波去噪的信号包络分析方法研究[J].电力科学与工程,2010,26(6):6-10,43.ZHANG Dongxue,YUAN Jinsha,LI Zhong.Study on a signal envelopment analysis method based on threshold method of improved wavelet denoising[J].Electric Power Science and Engineering,2010,26(6):6-10,43.
[12] 任海军,韦冲,谭志强,等.基于CEEMDAN-IAWT方法的滚动轴承振动信号降噪[J].振动与冲击,2023,42(13):199-207,268.REN Haijun,WEI Chong,TAN Zhiqiang,et al.Denoising of rolling bearing vibration signals based on CEEMDAN-IAWT method[J].Journal of Vibration and Shock,2023,42(13):199-207,268.
[13] 苗玉杰.岩石声发射信号处理小波基选择的探讨[J].计算机光盘软件与应用,2013,16(6):15-17.MIAO Yujie.Discussion on the selection of wavelet bases[J].Computer CD Software and Applications,2013,16(6):15-17.
[14] 杨丽荣,黎嘉骏,江川,等.岩样破裂过程声发射参数特征与时频特性分析[J].采矿与岩层控制工程学报,2023,5(1):013015.YANG Lirong,LI Jiajun,JIANG Chuan,et al.Analysis of acoustic emission parameters and time-frequency characteristics in the process of rock sample fracture[J].Journal of Mining and Strata Control Engineering,2023,5(1):013015.
[15] 米翰宁,王昕,任广振,等.自适应小波阈值去噪算法用于局部放电白噪声去噪[J].高压电器,2021,57(6):94-101.MI Hanning,WANG Xin,REN Guangzhen,et al.Denoising for white noise in partial discharge signals by adaptive wavelet threshold estimation[J].High Voltage Apparatus,2021,57(6):94-101.
[16] WANG Y H,ZHANG B,DING F G,et al.Estimating dynamic motion parameters with an improved wavelet thresholding and inter-scale correlation[J].IEEE Acc-ess,2018,6(3):39827-39838.
[17] DONOHO D L.Denoising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.DOI:10.1109/18.382009.
[18] 陈健,刘明,熊鹏,等.基于卷积自编码神经网络的心电信号降噪[J].计算机工程与应用,2020,56(16):148-155.CHEN Jian,LIU Ming,XIONG Peng,et al.ECG signal denoising based on convolutional auto-encoder neural network[J].Computer Engineering and Applications,2020,56(16):148-155.
[19] MITRAKOVIC D,GRABEC I,SEDMAK S.Simulation of AE signals and signal analysis systems[J].Ultrasonic,1985,23(5):227-232.
[20] 金解放,赵奎.岩石声发射测量地应力信号处理技术研究[J].江西理工大学学报,2008(3):10-12.JIN Jiefang,ZHAO Kui.Study on the signal processing for rock initial stress measurment by acoustic emission[J].Journal of Jiangxi University of Science and Technology,2008(3):10-12.
[21] 黄梦宏,唐礼忠.断续节理岩石破坏过程数值模拟研究[J].贵州工业大学学报(自然科学版),2002(5):12-15.HUANG Menghong,TANG Lizhong.Study on the failure process of intermittent joints rock by means of numerical simulation[J].Journal of Guizhou University of Technol-ogy(Natural Science Edition),2002(5):12-15.
[22] 张保良,沈宝堂,张金虎,等.脆性类岩石材料边缘裂纹扩展规律试验研究[J].采矿与岩层控制工程学报,2020,2(3):033035.ZHANG Baoliang,SHEN Baotang,ZHANG Jinhu,et al.Experimental study of edge-opened cracks propagation in rock-like materials[J].Journal of Mining and Strata Control Engineering,2020,2(3):033035.
Basic Information:
DOI:10.13532/j.jmsce.cn10-1638/td.2024.04.006
China Classification Code:TP18;TD315
Citation Information:
[1]王婷婷,徐华一,赵万春等.基于ZOA优化VMD-IAWT岩石声发射信号降噪算法[J].采矿与岩层控制工程学报,2024,6(04):154-170.DOI:10.13532/j.jmsce.cn10-1638/td.2024.04.006.
Fund Information:
国家自然科学基金资助项目(52174022,52074088); 2020年度东北石油大学西部油田开拓专项资助项目(XBYTKT202001); 黑龙江省博士后科研启动资助项目(LBH-Q21086); 黑龙江省省属高校基本科研业务费:控制科学与工程团队专项资助项目(2022TSTD-04); 黑龙江省“揭榜挂帅”科技攻关资助项目(DQYT-2022-JS-758); 低渗透油气田勘探开发国家工程实验室2023年度开放课题(鄂尔多斯盆地西缘钻井提速技术攻关研究)资助项目